A emissão alfa, desintegração alfa ou decaimento alfa é uma forma de decaimento radioativo que ocorre quando um núcleo atômicoinstável emite uma partícula alfa transformando-se em outro núcleo atômico com número atômico duas unidades menor e número de massa 4 unidades menor. A emissão alfa, portanto, é composta da mesma estrutura de núcleos do átomo de hélio. Uma emissão alfa é igual a um núcleo de hélio, que por sua vez, um núcleo atômico de hélio contém em seu interior dois prótons e dois nêutrons e a diferença entre a emissão alfa e o átomo de hélio é que na emissão alfa ela tem dois elétrons retirados da eletrosfera. Portanto, a partícula alfa tem carga positiva +2 (em unidades atômicas de carga) e 4 unidades de massa atómica.
História[editar | editar código-fonte]
Em 1896, o físico francês Antoine Henri Becquerel, em seus estudos sobre substâncias fosforescentes, verificou que compostos de urânio, causavam manchas escuras em chapas fotográficas, e mais tarde pode evidenciar que a radiação emitida pelo composto de urânio não era devida ao fenômeno de fosforescência e sim devido a radiação invisível emitida pelo composto de urânio, ou seja, o composto de urânio tinha uma atividade própria para emitir “raios” invisíveis. E a partir de 1898, o estudo da radioatividade começou realmente a se desenvolver e outros elementos radioativos foram descobertos, inclusive o rádio, de onde veio o nome “radioativo”.
Comprovou-se que um núcleo muito energético, por ter excesso de partículas ou de carga, tende a estabilizar-se, emitindo algumas partículas.
Ao desintegrar-se, os átomos dos elementos radioativos emitem energia na forma de radiação. A descoberta da radiação trouxe o conhecimento da existência das partículas subatômicas: os prótons e nêutrons (que compõem o núcleo do átomo) e os elétrons que se movimentam a altas velocidades.
Propriedades[editar | editar código-fonte]
As partículas são núcleos de hélio e têm uma interação forte com a matéria, sendo rapidamente absorvidas.
A partícula escapa do núcleo com uma maior frequência do que outros núcleos menores, como o deutério, devido a sua energia de ligação (, ou por cada núcleo), comparando-se com o dêuteron, . O tunelamento quântico é capaz de explicar este fenômeno[1]
O decaimento alfa tem uma propriedade de decrescer o número atômico de massa A por 4 unidades. Assim, os produtos de uma cadeia de decaimentos alfa terão produtos cujas massas atômicas se diferenciam por quatro unidades. Temos quatro séries radioativas:
- 1ª Série é dada pelos núcleos com número atômico divisível
por 4 e que, decaindo, perdem uma partícula alfa e ficam na mesma série.
- 2ª Série Núcleos com número atômico dado por A = 4n + 1.
- 3ª Série Núcleos com número atômico dado por A = 4n + 2.
- 4ª Série Núcleos com número atômico dado por A = 4n + 3.
Na tabela , são mostradas essas séries. O Neptúnio já não pode mais ser encontrado na natureza, uma vez que seu tempo de vida é cerca de anos.Porém, podendo ser fabricado em laboratório.[1]
Núcleos também podem se desintegrar de dois modos.O bismuto (Bi) desintegra-se em uma taxa de 66,3% emitindo radiação e 33,7% emitindo partículas . A cadeia de desintegração ramifica-se assim: Um dos isótopos do rádio tem uma meia-vida de 5 horas.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A energia cinética com a qual a partícula viaja, tendo a partícula alfa que sai do núcleo atômico provém da diferença de massas de repouso dos dois núcleos inicial e final.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Olhando a tabela de massas, temos
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Essa, porém, não é a energia cinética da partícula alfa. Por causa da conservação de momento. O núcleo inicial tem momento nulo. Isto quer dizer que o estado final também tem que ter momento nulo, e portanto, existe um recuo do Th que custa energia, embora seja praticamente imperceptível dada a sua massa. Q é portanto a energia cinética total do sistema, isto é,
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde p é o momento da partícula alfa e que é igual ao do átomo de Th.
Colocando em evidência a massa da partícula alfa, temos
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
ou
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Assim temos
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Taxa de decaimento[editar | editar código-fonte]
Um modelo de explicação sobre a taxa de decaimento alfa foi proposto por George Gamow, onde se têm uma partícula formada no núcleo atômico com um potencial , que combina o seu potencial nuclear entre o núcleo (A-Z,Z-2) e a partícula alfa.[2]
O modelo também nos diz que a partícula alfa a um potencial constante no núcleo e ao potencial de coulomb fora do núcleo de raio R. A probabilidade de a partícula escapar do núcleo é dada por P=e-γ, sendo
(Z)
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Sendo P a probabilidade da partícula chegar na superfície do núcleo e 1 - P de continuar nele.
Em um modelo semi clássico, multiplicamos a probabilidade do escape pela frequência com que a partícula chega na superfície, temos assim
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
sendo v representando a velocidade com que a partícula alfa se move no núcleo, com isso dá-se a taxa de decaimento , é
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Calculamos o expoente a partir da equação (Z) e fica assim:
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Exemplo[editar | editar código-fonte]
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
que também pode ser escrito assim:
A partícula alfa é um núcleo de um átomo de hélio. Portanto, a partícula alfa ou “raio alfa’’ é um íon de carga 2+ com dois nêutrons e dois prótons, representado por 4He2+.[3]
As partículas alfa apresentam grande poder de ionização devido a sua carga. No entanto, seu poder de penetração é inferior ao da partícula beta, dos raios-X e dos raios gama.
Na altura em que foi descoberta a emissão do rádio 226 (1898), por Marie Curie e Pierre Curie, chamou-se ao fenómeno radioactividade ou emissão .
Às partículas emitidas deu-se o nome de partículas apenas por ser a primeira letra do alfabeto grego.
Posteriormente, verificou-se que essas partículas eram um núcleo de hélio, formado por 2 prótons e 2 nêutrons. As partículas emitidas apresentam energias bem definidas e podem ser utilizadas para caracterizar o núcleo de onde provêm.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Sem comentários:
Enviar um comentário